

LAND OFF COBBLERS LANE, PONTEFRACT

FLOOD RISK AND DRAINAGE ASSESSMENT Final Report v1.0

November 2018

Weetwood Services Ltd Suite C22 Joseph's Well Hanover Walk Leeds LS3 1AB

0113 244 1377 info@weetwood.net www.weetwood.net

Report Title	Land off Cobblers Lane, Pontefract Flood Risk Assessment Final Report v1.0
Client	Mr N Dando
Date of issue	7 November 2018

Prepared by	Keely Bonser BSc (Hons) MSc PhD Associate Director
Checked and approved by	Kevin Tilford BSc (Hons) MSc(Eng) PhD MBA C.WEM MCIWEM Managing Director

This document has been prepared solely as a Flood Risk Assessment for Mr N Dando. This report is confidential to Mr N Dando and Weetwood Services Ltd accepts no responsibility or liability for any use that is made of this document other than by Mr N Dando for the purposes for which it was originally commissioned and prepared.

Contents

Conte		i
1	INTRODUCTION	1
1.1 1.2	Purpose of Report Structure of the Report	1 1
2	PLANNING POLICY AND GUIDANCE	2
2.1 2.2 2.3 2.4	National Planning Policy and Guidance Local Planning Policy and Guidance Consents Relevant Documents	3 4
3	SITE DETAILS AND PROPOSED DEVELOPMENT	5
3.1 3.2 3.3 3.4 3.5 3.6	Site Details Proposed Development Waterbodies in the Vicinity of the Site Ground Conditions Site Levels Access and Egress	5 5 6 6
4	REVIEW OF FLOOD RISK	9
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Flood Zone Designation 1 Sequential Test and Exception Test 1 Historical Records of Flooding 1 Fluvial Flood Risk 1 Flood Risk from Surface Water 1 Flood Risk from Reservoirs, Canals and Other Artificial Sources 1 Flood Risk from Groundwater 1	.0 .0 .0 .0
5	FLOOD RISK MITIGATION MEASURES 1	2
5.1 5.2	Finished Floor Levels	
6	SURFACE WATER MANAGEMENT	3
6.1 6.2 6.3 6.4 6.5 6.6	Existing Flow Regimes 1 Post Development Impermeable Area 1 Disposal of Surface Water 1 Indicative Drainage Scheme 1 Adoption and Maintenance of SuDS 1 Summary 1	.3 .3 .3 .5

7	SUMMARY	17
Q	RECOMMENDATIONS	1.2

List of Tables

Table 1:	Greenfield Runoff Rate	13	
Table 2:	Indicative SuDS Maintenance Schedule	15	

List of Figures

Figure 1:	Site Location	5
Figure 2:	Digital Terrain Model from Topographical Survey	7
Figure 3:	Digital Terrain Model from LiDAR	7
Figure 4:	Flood Map for Planning	9
Figure 5:	Flood Risk from Surface Water 1	0
Figure 6:	Groundwater Flooding Hazard Map 1	.1

List of Appendices

Appendix A: Topographic Survey

- Appendix D: Option 1: Surface Water Attenuation Storage Volume Calculations Appendix D: Option 1: Surface Water Attenuation Sensitivity
- Appendix E: Option 2: Surface Water Attenuation Storage Volume Calculations
- Appendix F: Option 2: Surface Water Attenuation Sensitivity

1 INTRODUCTION

1.1 PURPOSE OF REPORT

Weetwood Services Ltd ('Weetwood') has been instructed by Mr N Dando to prepare a Flood Risk Assessment (FRA) report to accompany an outline planning application for the proposed development of a site off Cobblers Lane, Pontefract.

The assessment has been undertaken in accordance with the requirements of the National Planning Policy Framework (NPPF) and National Planning Practice Guidance (NPPG).

1.2 STRUCTURE OF THE REPORT

The report is structured as follows:

- Section 1 Introduction and report structure
- **Section 2** Presents national and local flood risk and drainage planning policy
- **Section 3** Provides background information relating to the development site, the development proposals, ground conditions and existing site access arrangements
- **Section 4** Assesses the potential sources of flooding to the development site
- **Section 5** Presents flood risk mitigation measures based on the findings of the assessment
- **Section 6** Addresses the effect of the proposed development on surface water runoff and presents an illustrative surface water drainage scheme to ensure that surface water runoff is sustainably managed and flood risk is not increased elsewhere.
- **Section 7** Presents a summary of key findings
- **Section 8** Presents the recommendations

2 PLANNING POLICY AND GUIDANCE

2.1 NATIONAL PLANNING POLICY AND GUIDANCE

2.1.1 National Planning Policy Framework

The aim of the NPPF is to ensure that flood risk is taken into account at all stages in the planning process and is appropriately addressed.

2.1.1.1 Sequential Test

Paragraph 155 of the NPPF states that "inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere".

This policy is implemented through the application of the sequential test (NPPF paragraph 158).

2.1.1.2 Exception Test

Paragraph 159-161 of the NPPF states "If it is not possible for the development to be located in zones with a lower risk of flooding (taking into account wider sustainable development objectives) the exception test may have to be applied. The need for the exception test will depend on the potential vulnerability of the site and of the development proposed, in line with the Flood Risk Vulnerability Classification set out in the national planning guidance" (Paragraph 159).

"The application of the exception test should be informed by a strategic or site-specific FRA, depending on whether it is being applied during plan production or at the application stage. For the exception test to be passed it should be demonstrated that: a) the development would provide wider sustainability benefits to the community that outweigh the flood risk; and b) the development will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall" (Paragraph 160).

"Both elements of the exception test should be satisfied for development to be allocated or permitted" (Paragraph 161).

2.1.1.3 Surface Water Drainage

Paragraph 163 of the NPPF states that development should only be allowed in areas at risk of flooding if it incorporates sustainable drainage systems unless there is clear evidence that this would be inappropriate.

The NPPF also states, in paragraph 165 that applications for major developments as defined in the Town and Country Planning (Development Management Procedure) (England) Order 2015, should incorporate sustainable drainage systems to appropriate operational standards and with maintenance arrangements in place unless there is clear evidence that this would be inappropriate.

2.1.2 Technical Standards for Sustainable Drainage Systems (DEFRA, March 2015)

The non-statutory technical standards state that surface water drainage systems must be designed so that:

- Flooding does not occur on any part of the site for a 1:30 annual probability rainfall event, unless an area is designed to hold and/or convey water as part of the design;
- Flooding does not occur in any part of a building during a 1:100 annual probability event; and
- Flows resulting from rainfall in excess of a 1:100 annual probability rainfall event are managed in exceedance routes that minimise the risks to people and property, so far as is reasonably practicable.
- For greenfield developments, the peak runoff rate from the development to any drain, sewer or surface water body for the 1:1 and 1:100 annual probability rainfall event should never exceed the peak greenfield runoff rate for the same event. For developments which were previously developed, the peak runoff rate must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.
- Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1:100 annual probability, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event. Where reasonably practicable, for developments which have been previously developed, the runoff volume must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.
- Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

2.2 LOCAL PLANNING POLICY AND GUIDANCE

Wakefield Metropolitan District Council (MDC) Local Development Framework was adopted April 2009 and includes the following relevant policies.

'Policy D24 – Flood Risk' states:

- (Stem c): "Applicants must demonstrate that developments can be considered safe over their predicted lifetime, and that they will not increase flooding elsewhere"
- (Stem d): "Measures to mitigate the risk of flooding and to manage any residual flood risk must be provided as part of the development and provision must be made for their future maintenance."

'Policy D25 – Drainage' states that major flooding events have occurred within the district caused by surface water and sewer flooding and:

• (Stem 1): "Surface water from new developments must be managed using sustainable drainage techniques unless it can be demonstrated that they are not technically feasible. New developments on brownfield sites will be expected to reduce runoff rates by at least 30%, and must not increase existing rates on greenfield sites."

• (Stem 2): "Development will only be permitted if infrastructure required to service the development is available or the provision of infrastructure can be co-ordinated to meet the demand generated by the new development."

The reduction to runoff rates on brownfield sites must be applied to a 1 in 1 year rainfall event. On-site storage for surface water for a 1 in 100 year event must also be incorporated.

Policy D28 - Sustainable Construction and Efficient Use of Resources states: "The Council will require that new development within the district shall be energy and water efficient and incorporate built-in conservation measures. Opportunities to conserve energy and water resources through the layout and design of the development shall be maximised. In considering planning applications the Council will require where practical:"

• Stem c): "The use of green roofs, rainwater and grey water storage and recycling, and sustainable drainage systems."

Policy CS 13 - Mitigating and Adapting to Climate Change and Efficient Use of Resources states:

"In order to be sustainable, development must minimise the impact and mitigate the likely effects of climate change on existing and future occupants, the wider community and the environment and minimise the use of natural resources. This will be achieved by:"

- (Stem a): "Avoiding unacceptable levels of flood risk, particularly in areas of high flood risk such as the Calder River Valley, the Went River Basin, and river tributaries in the south east of the district";
- (Stem d): "Proactively managing surface water through the promotion of sustainable drainage techniques and positive land management."

2.3 CONSENTS

An Environmental Permit for Flood Risk Activities may be required from the Environment Agency (EA) for work:

- In, under, over or near a main river (including where the river is in a culvert)
- On or near a flood defence on a main river
- In the flood plain of a main river
- On or near a sea defence

Further information can be found at https://www.gov.uk/guidance/flood-risk-activitiesenvironmental-permits.

Land drainage consent may be required from the Lead Local Flood Authority or Internal Drainage Board for work to an Ordinary Watercourse. Undertaking activities controlled by local byelaws (made under the Water Resources Act 1991) also requires the relevant consent.

2.4 RELEVANT DOCUMENTS

The assessment has been informed by the following documents:

- Strategic Flood Risk Assessment (SFRA) Level 2, Wakefield MDC, January 2009
- Calder Catchment SFRA Volume II, Wakefield Council, July 2016
- Preliminary Flood Risk Assessment (PFRA), Wakefield MDC, June 2011

3 SITE DETAILS AND PROPOSED DEVELOPMENT

3.1 SITE DETAILS

The approximately 1.28 ha greenfield site is located to the east of Cobblers Lane, Pontefract at Ordnance Survey National Grid Reference SE 471 226, as shown in **Figure 1**.

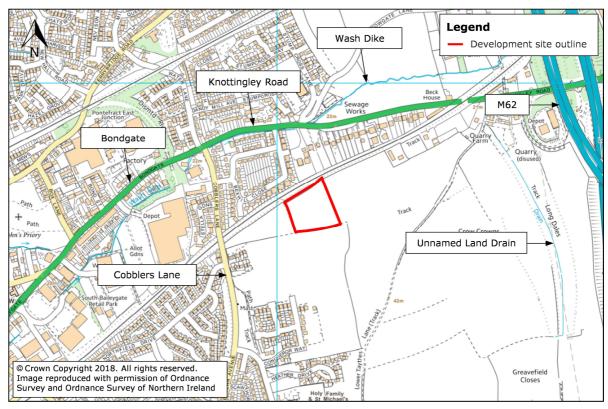


Figure 1: Site Location

3.2 PROPOSED DEVELOPMENT

The proposed development is for the construction of up to 50 dwellings with associated access and landscaped areas including green open space.

The NPPG classifies residential development as More Vulnerable land use.

3.3 WATERBODIES IN THE VICINITY OF THE SITE

Wash Dike flows predominantly in a north-easterly direction approximately 180 m to the north of the site. Wash Dike outfalls into the Aire and Calder Navigation approximately 2.3 km to the north-east of the site.

An unnamed land drain is located approximately 520 m east of the site. The land drain is classified as an ordinary watercourse.

3.4 **GROUND CONDITIONS**

National Soils Research Institute mapping¹ classifies soil conditions at the site and within the surrounding area as 'Slowly permeable seasonally wet acid loamy and clayey soils'.

British Geological Survey (BGS) Surface Geology mapping² indicates the underlying bedrock to comprise of mudstone, siltstone and sandstone. No superficial deposits are recorded.

A site investigation³ on land adjacent to the south of the site indicates ground conditions to generally comprise topsoil over natural clay underlain by limestone bedrock.

BGS borehole records located along Cobblers Lane to the west indicates ground conditions to comprise of the following:

- BGS reference SE42SE509: Silt up to 0.7 metres below ground level (m bgl)
- BGS reference SE42SE174: Clay up to 1.2 m bgl underlain by limestone up to 1.4 m bgl
- BGS reference SE42SE175: Clay and gravel up to 2.5 m bgl underlain by limestone up to 3.0 m bgl
- BGS reference SE42SE510 and E42SE511: Sand up to 0.5 m bgl
- BGS reference SE42SE223 and SE42SE467: Limestone up to 20 m bgl

Soakaway testing on land adjacent to the southern boundary of the site indicated that infiltration rates varied from 4.3 to 38×10^{-6} m/sec⁴.

DEFRA mapping classifies the underlying bedrock as a Principal aquifer. These are layers of rock or drift deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. In most cases, principal aquifers are aquifers previously designated as major aquifer.

The site is not shown to be located within a designated Groundwater Source Protection Zone.

3.5 SITE LEVELS

A topographic survey of the site has been undertaken by Landmark Surveys (UK) Ltd and is provided in **Appendix A**.

This information has been utilised to develop a digital terrain model as illustrated in **Figure 2**. Site levels are generally shown to be in the region of 36.0 to 43.3 m Above Ordnance Datum (AOD), with ground levels sloping down towards the north-east corner of the site.

LiDAR has been used to develop a digital terrain model of the surrounding area as illustrated in **Figure 3**.

¹ www.landis.org.uk/soilscapes/

² http://mapapps.bgs.ac.uk/geologyofbritain/home.html

³ Phase 1 Geotechnical and Geo-Environmental Site Investigation, Cobblers Lane, Pontefract, Eastwood and Partners, August 2016

⁴ Land at Cobblers Lane, Pontefract – Infiltration Investigation, Eastwood and Partners, December 2014

 Figure 2:
 Digital Terrain Model from Topographical Survey

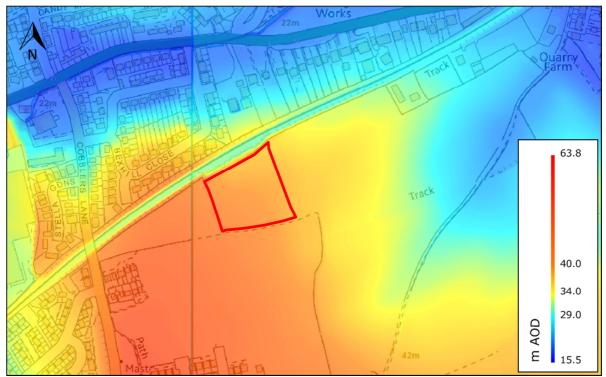
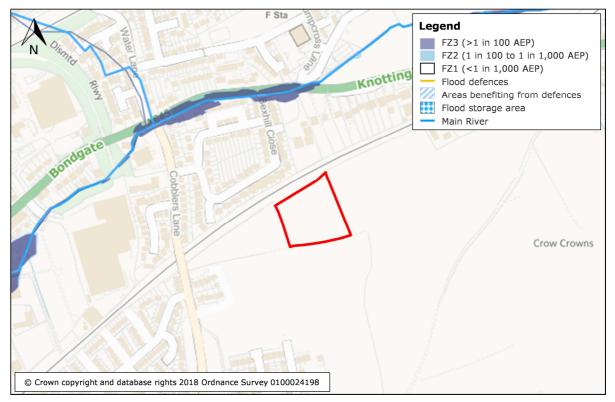


Figure 3: Digital Terrain Model from LiDAR

3.6 ACCESS AND EGRESS

Access and egress to the site is provided off Cobblers Lane. Levels along Cobblers Lane adjacent to the site are generally shown to be in the region of 39.5 to 40.0 m AOD, with levels sloping down in a northerly direction.

4 **REVIEW OF FLOOD RISK**


4.1 FLOOD ZONE DESIGNATION

Flood zones refer to the probability of river and sea flooding. The NPPG defines flood zones as follows:

- Flood Zone 1: Low Probability. Land having a less than 1:1,000 annual probability of river or sea flooding.
- Flood Zone 2: Medium Probability. Land having between a 1:100 and 1:1,000 annual probability of river flooding; or Land having between a 1:200 and 1:1,000 annual probability of sea flooding.
- Flood Zone 3a: High Probability. Land having a 1:100 or greater annual probability of river flooding; or Land having a 1:200 or greater annual probability of sea flooding.
- Flood Zone 3b: Functional Floodplain. Land where water has to flow or be stored in times of flood.

The flood zones are shown on the Flood Map for Planning. The zones do not account for possible future changes in flooding due to the impact of climate change or the presence of flood defences (although areas benefitting from flood defences may be indicated).

According to the Flood Map for Planning (**Figure 4**) the site is located in Flood Zone 1. Map W of the Calder Catchment SFRA reaffirms the sites Flood Zone 1 designation.

4.2 SEQUENTIAL TEST AND EXCEPTION TEST

The proposed development site is situated within Flood Zone 1 and therefore satisfies the requirements of the sequential test.

Furthermore, the application of the exception test is subsequently not deemed to be necessary; however, the proposals should still meet the requirements for site specific FRAs.

4.3 HISTORICAL RECORDS OF FLOODING

Map W of the Calder Valley SFRA does not contain any records of historic flood events within the vicinity of the site.

4.4 FLUVIAL FLOOD RISK

LiDAR data indicates that Wash Dike and the unnamed land drain are over 14 m below site levels. In addition, the development site is located in Flood Zone 1. As such, the site is assessed not to be at risk of fluvial flooding.

4.5 FLOOD RISK FROM SURFACE WATER

The Flood Risk from Surface Water map (**Figure 5**) indicates that the site is at 'Very Low' risk of flooding from surface water.

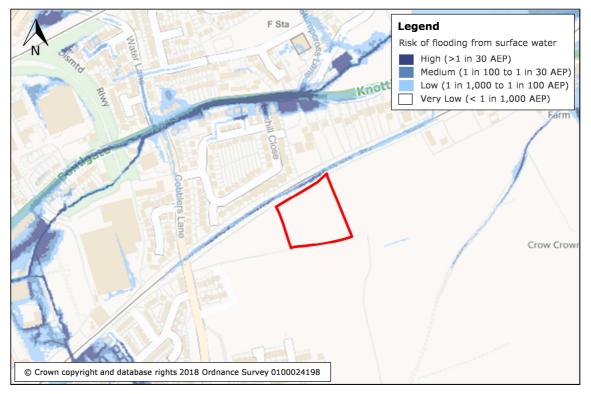


Figure 5: Flood Risk from Surface Water (Source: gov.uk website)

4.6 FLOOD RISK FROM RESERVOIRS, CANALS AND OTHER ARTIFICIAL SOURCES

There are no canals or other impounded waterbodies located within the immediate vicinity of the site. The Flood Risk from Reservoirs map indicates that the site is not at risk of flooding from such sources. The site is therefore assessed not to be at risk of flooding from reservoirs, canals or other artificial sources.

4.7 FLOOD RISK FROM GROUNDWATER

According to the BGS Groundwater Flooding Hazard map (**Figure 6**) the susceptibility to groundwater flooding is 'Low'.

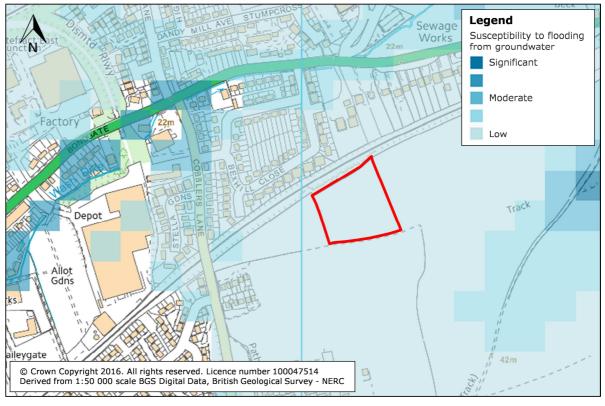


Figure 6: Groundwater Flooding Hazard Map (Source: Findmaps)

5 FLOOD RISK MITIGATION MEASURES

5.1 FINISHED FLOOR LEVELS

Finished floor levels should be set at a minimum of 0.15 m above adjacent ground levels following re-profiling of the site in order to mitigate the residual risk of flooding from groundwater.

This will, subject to the implementation of an appropriately designed surface water drainage scheme (**Section 6**), enable any potential overland flows to be conveyed safely across the site without affecting property in accordance with the approach promoted by government $policy^5$.

5.2 ACCESS AND EGRESS

Dry access and egress to the site may be provided via Cobblers Lane via the Barratt Homes estate (currently under construction/near completion) adjacent to the south of the site.

⁵ Making Space for Water, Taking forward a new Government strategy for flood and coastal erosion risk management in England, March 2005, Dept for Environment, Food and Rural Affairs

6 SURFACE WATER MANAGEMENT

6.1 EXISTING FLOW REGIMES

The site comprises approximately 1.28 ha of undeveloped greenfield land. Given site topography and ground conditions, surface water runoff would be expected to infiltrate where conditions allow and/or flow overland in a north-easterly direction towards the railway line.

The greenfield surface water runoff rates for the site, calculated using the ICP SUDS method within MicroDrainage, are presented in **Table 1**. Details of the input parameters and the output results are provided in **Appendix B**.

Annual probability of rainfall event	Greenfield Runoff Rate (l/s/ha)	Greenfield Runoff Rate for 1.28 ha Site (l/s)
1:1	3.2	4.1
QBAR	3.7	4.7
1:30	6.4	8.2
1:100	7.6	9.7

 Table 1:
 Greenfield Runoff Rate

6.2 POST DEVELOPMENT IMPERMEABLE AREA

The layout of the development is yet to be fixed. As such, for the purposes of this assessment the area of impermeable surfaces has been estimated to be 0.51 ha, based on guidance provided in Urban Drainage⁶.

6.3 DISPOSAL OF SURFACE WATER

In accordance with the NPPG⁷, surface water runoff should be disposed of according to the following hierarchy: Into the ground (infiltration); To a surface water body; To a surface water sewer, highway drain, or another drainage system; To a combined sewer.

The preliminary assessment of ground conditions presented in **Section 3.4** indicates that the disposal of surface water by infiltration may be feasible. However, on-site percolation tests would need to be undertaken to confirm this at the discharge of condition/reserved matters stage.

In the event that infiltration is not feasible, surface water runoff from impermeable surfaces would be discharged to the unnamed land drain to the east of the site.

6.4 INDICATIVE DRAINAGE SCHEME

Two drainage schemes have been prepared for the proposed development – Option 1 disposal via infiltration and Option 2 disposal to a watercourse.

For both options, attenuation storage will be provided to store surface water runoff generated across roofs and hardstanding.

⁶ Urban Drainage 3rd Edition, Butler, D and Davies, J.W, 2011, Section 11.3.2 and Table 11.2

⁷ Paragraph 080, Reference ID: 7-080-20150323

The storage facilities have been modelled using the Detailed Design module of MicroDrainage Source Control. The assessment has been undertaken for the 1:100 annual probability storm event including a 20% increase in rainfall intensity in order to allow for climate change in accordance with the 2016 guidance⁶. A sensitivity analysis has been undertaken using a 40% increase in rainfall intensity in order to allow for uncertainty with respect to climate change.

6.4.1 Option 1: Disposal of Surface Water via Infiltration

For the purposes of the outline surface water drainage strategy, it has been assumed that surface water runoff from impermeable surfaces of the developed site will be drained via one or more infiltration basins.

Assuming an infiltration rate of 0.15 m/hr and a 1.3 m depth infiltration basin (including a 0.3 m freeboard and a side slope of 1 in 3), an area of approximately 343 m² would be required (see **Appendix C**).

The sensitivity analysis for climate change indicates that the additional volume of surface water would be catered for within the freeboard of the infiltration basin (see **Appendix D**). As such, no flooding of the drainage system would therefore be expected in the 1:100 annual probability rainfall event including a 40% increase in rainfall intensity.

6.4.2 Option 2: Disposal of Surface Water to a Watercourse

6.4.2.1 Peak Flow Control

It is proposed to restrict surface water runoff to the existing greenfield QBAR rate of 4.7 l/s post development, as outlined in **Table 1**.

6.4.2.2 Volume Control

Where reasonably practicable, for greenfield sites, the runoff volume from the proposed development to any highway drain, sewer or surface water body in the 1:100 annual probability, 6 hour rainfall event should not exceed the greenfield runoff volume for the same event.

This is usually addressed by designing a long term storage facility within the site. However, as outlined within the CIRIA SuDS Manual 2015 an alternative approach to managing extra runoff volumes from extreme events is to release all runoff (above the 1:1 annual probability event) from the site at a maximum rate of 2 l/s/ha or QBAR, whichever is the higher value.

Given the proposals to restrict peak discharge rates to the existing QBAR rate in up to the 1:100 annual probability event, including an allowance or climate change, long term storage is not required.

6.4.2.3 Attenuation Storage

For the purposes of the surface water drainage strategy, it has been assumed that surface water storage would be provided within an attenuation basin.

Assuming a peak discharge rate of 4.7 l/s, an approximate storage volume of 225 m³ would be required. This could be accommodated within a 1.3 m deep basin (including a 0.3 m freeboard and a side slope of 1 in 3) with a surface area of approximately 369 m² (see **Appendix E**).

The sensitivity analysis for climate change indicates that the additional volume of surface water would be catered for within the freeboard of the detention basin structures (see **Appendix F**). As such, no flooding of the drainage system would therefore be expected in the 1:100 annual probability rainfall event including a 40% increase in rainfall intensity.

The calculations assume that all storage is provided within the formal attenuation storage facility; with no storage being provided in the proposed pipe network. As such, the volumes of storage presented are likely to be an overestimate and would be expected to reduce when the drainage scheme is refined at the discharge of conditions/reserved matters stage.

In practice the storage is likely to be provided in a number of different storage facilities. The potential for alternative and/or additional SuDS features (for example, permeable paving, geo-cellular storage tanks and retention ponds) and the sizing and location of the storage facilities will be confirmed at the discharge of condition/reserved matters stage.

6.4.2.4 Exceedance Routes

Flows resulting from rainfall in excess of the 1:100 annual probability rainfall event including an allowance for climate change (20% and 40%) will be directed away from built development and along managed exceedance routes.

6.5 ADOPTION AND MAINTENANCE OF SUDS

The pipe network may be adopted by the sewerage undertaker.

SuDS elements within the curtilage of residential dwellings would be the responsibility of the owner of the property.

SuDS in open spaces may be maintained by a management company.

An indicative maintenance schedule is presented in Table 2.

Schedule	Required action	Frequency
Regular	Remove litter and debris	Monthly
maintenance	Cut grass	Monthly during grow season Or as required)
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly
	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies	Monthly for first year, then annually or as required
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets/outlets	Annually (or as required)
Occasional	Reseed areas of poor vegetation growth	As required
maintenance	Prune and trim any trees and remove cuttings	Every two years, or as

 Table 2:
 Indicative SuDS Maintenance Schedule (Infiltration/Attenuation Basin)

Schedule	Required action	Frequency	
	Remove sediments from inlets/outlets and main basin when required	required	
Remedial actions	Repair erosion or other damage by reseeding or re- turfing		
	Realignment of rip-rap	As required	
	Repair/rehabilitation of inlets/outlets		
	Relevel uneven surface and reinstate design levels		

6.6 SUMMARY

The findings of this report have demonstrated that a surface water drainage strategy at the site is feasible and in accordance with planning policy for the development proposals. Through the implementation of a surface water drainage strategy and taking climate change into account, flood risk would not be increased elsewhere.

7 SUMMARY

This report has been prepared on behalf of Mr N Dando and relates to the proposed development of a site off Cobblers Lane, Pontefract.

According to the Flood Map for Planning the proposed development is located outside the 1:1,000 annual probability flood outline and is therefore defined by the NPPF as being situated within Flood Zone 1.

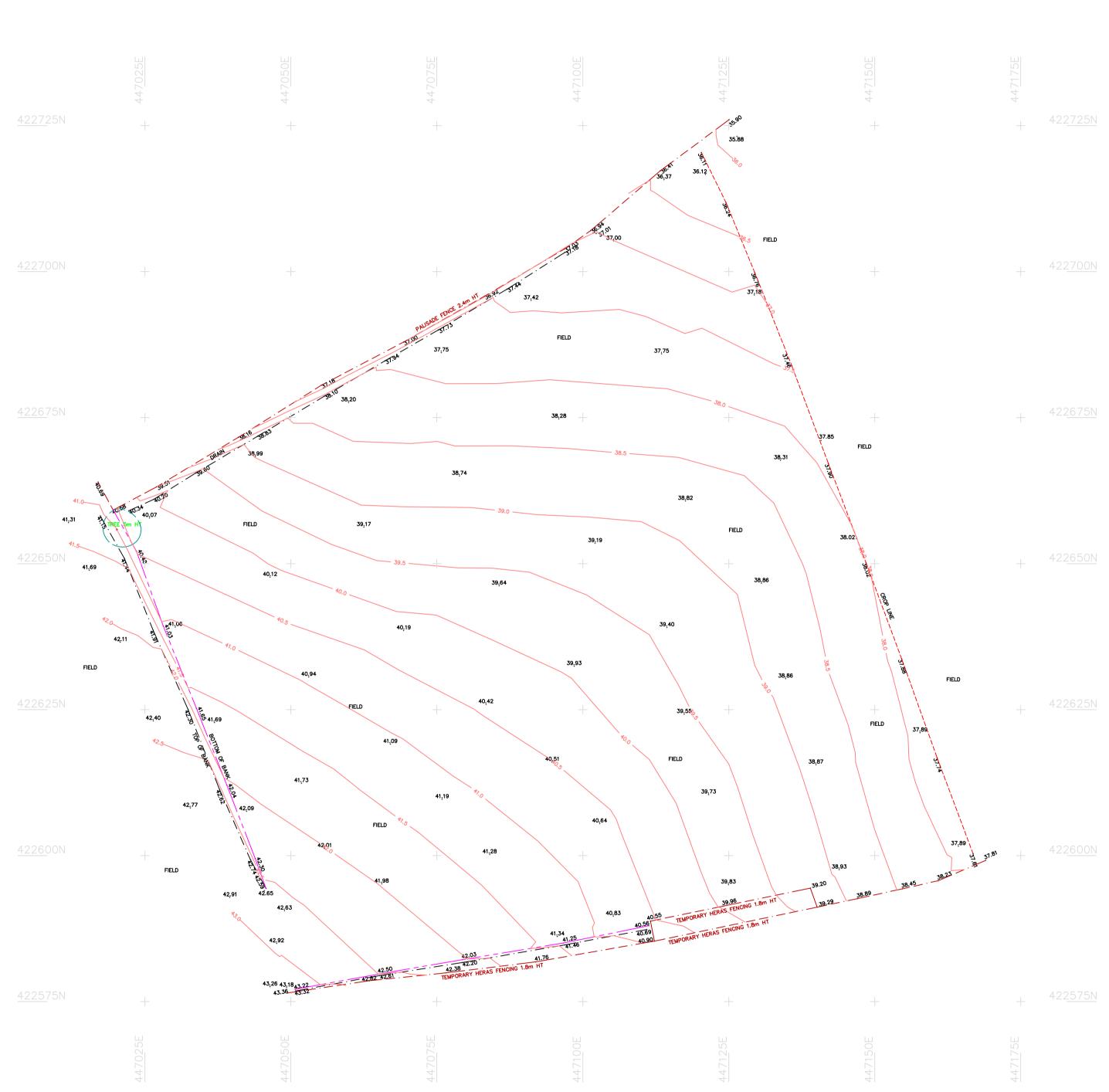
As the site is in Flood Zone 1, the sequential test is deemed to have been addressed and the exception test need not be applied.

The site is assessed not to be at risk of flooding from fluvial sources, surface water, reservoirs, canals or other artificial sources and at a low risk of groundwater flooding.

Dry access and egress to the site may be provided via Cobblers Lane via the Barratt Homes estate (currently under construction/near completion) adjacent to the south of the site.

Surface water runoff from the developed site can be sustainably managed in accordance with planning policy and the development is not expected to impact flood risk elsewhere.

8 **RECOMMENDATIONS**


This report has demonstrated that the proposed development may be completed in accordance with the requirements of planning policy subject to the following:

- Finished floor levels to be set 0.15 m above adjacent ground levels following any re-profiling at the site.
- The detailed drainage design to be submitted to and approved by the local planning authority prior to the commencement of development.

APPENDIX A:

Topographic Survey

Ν	NOTES
LEVEL DATUM OS ORTH	IOMETRIC HTS
GRID ORIENTATIONOSG	B36
N	NORTH
	Ţ
	< EY
BT	RE HYDRANT RITISH TELECOM MANHOLE
 EL	LECTRICITY INSPECTION COVER
	ABLE TV ATER STOP VALVE
🚰 — — — — GA	AS VALVE
	ECTRICITY POST/PYLON GHT
	RAFFIC LIGHT
^{RS} – – – – – RC	DAD SIGN
	ELEGRAPH POLE
GU	TAY WIRE
KO.	DAD GULLEY ERB OUTLET
мн	AINAGE MANHOLE
wo	ASHOUT
	AIN/DIKE WATER LEVEL
[⊑] – — — — − DR	AIN/DIKE INVERT LEVEL
	P OF BANK
	TTOM OF BANK
	ACK
BU	ILDING
RO	AD CHANNEL
	DGEROW
	EE CANOPY
Date	VISIONS Details
	Details
· · · · · · · · · · · · · · · · · · ·	$\widehat{}$
Ċ	· · · · · · · · · · · · · · · · · · ·
l andm	ark Surveys
(UK)	ark Surveys) Ltd
CUDWOF BARNSL	_EY
S72 8B TEL. 01 FAX. 01	3W 226 780070 1226 780070
MOBILE	TEL. 07801 697470 mark.landmark@btinternet.com
	.N.DANDO
	COBBLERS LANE ITEFRACT
Scale 1 : 500	Date OCT 2018
Drawn by: M.R.GILMORE	Surveyed by: M.R.G.,B.P
Checked by:	Plan Ref. NBA006SP

APPENDIX B:

Greenfield Runoff Calculations

Weetwood			Page 1
Joseph's Well			
Hanover Walk			
Leeds, LS3 1AB			Mirro
Date 06/11/2018	08:39	Designed by KeelyBonser	— Micro Drainage
File		Checked by	Diamage
XP Solutions		Source Control 2018.1.1	
		C Maan Janual Elasal	
	ICP SUD	<u>S Mean Annual Flood</u>	
		Input	
	Return Period (yea	rs) 100 Soil 0.450	
	Area (ha) 1.000 Urban 0.000 mm) 600 Region Number Region 3	
		Results 1/s	
		QBAR Rural 3.7 QBAR Urban 3.7	
		QDAR UIDall 5.7	
		Q100 years 7.6	
		Q1 year 3.2	
		Q30 years 6.4	
		Q100 years 7.6	

APPENDIX C:

Option 1: Surface Water Attenuation - Storage Volume Calculation

leetwood							Page
oseph's Well							
Ianover Walk							
eeds, LS3 1AB							Mice
ate 06/11/2018 13	3:36	1	Designed	bv Keel	vBonser		Micr
ile 2018-11-06 43			Checked	-	12011002		Draii
ILC 2010 IL 00 4			Source C		010 1 1		
P SOLUCIONS			Source c	UNLIUI Z	.010.1.1		
Summar	ry of Resul	ts fo	r 100 ve	ar Retur	n Perio	d (+20%)	
			n Time : 2				
	Storm	Max	Max	Max	Max	Status	
	Event		Depth In			Status	
	270110	(m)	(m)	(1/s)	(m ³)		
				<i>.</i>	- 100 -		
	5 min Summer				.5 100.5		
	0 min Summer 0 min Summer				.4 129.7 .2 156.0		
	0 min Summer 0 min Summer				.2 156.0 .6 173.1		
	0 min Summer 0 min Summer				.6 173.1		
	0 min Summer				.7 175.4		
	0 min Summer				.6 171.2		
	0 min Summer				4 165.7		
	0 min Summer				3 159.6		
	0 min Summer			8.	.1 153.5		
	0 min Summer			7.	.8 142.1		
144	0 min Summer	36.37	7 0.677	7.	.2 122.6	O K	
	0 min Summer				.5 99.4		
	0 min Summer				.9 81.5		
	0 min Summer				.0 55.9		
	0 min Summer				.4 38.7		
	0 min Summer				.9 26.5		
	0 min Summer 0 min Summer				.6 18.0 .3 11.7		
	5 min Winter				.9 112.9		
	Stor	m	Rain	Flooded 7	Fime-Peak		
	Ever	it	(mm/hr)	Volume (m³)	(mins)		
	15 '	C	- 110 050		10		
	15 min 30 min		r 110.050 r 72.924	0.0	18 33		
	30 min 60 min			0.0	33 62		
	120 min			0.0	120		
	180 min			0.0	120		
	240 min			0.0	188		
	360 min			0.0	254		
	480 min			0.0	324		
	600 min			0.0	392		
	720 min	Summe	r 7.099	0.0	462		
	960 min	Summe	r 5.662	0.0	598		
	1440 min	Summe	r 4.109	0.0	866		
	2160 min			0.0	1252		
	2880 min			0.0	1616		
	4320 min			0.0	2336		
	5760 min			0.0	3064		
	7200 min			0.0	3816		
	8640 min 10080 min			0.0	4496 5152		
			r 0.861 r 110.050	0.0	5152 18		
					10		

Joseph's We Hanover Wal Leeds, LS3							
oode IS3	k						
							Micro
ate 06/11/	2018 13 : 36	I	Designed	by Keel	lyBonser		Draina
Tile 2018-1	1-06 4322 Infilt	r (Checked	Dialita			
XP Solution	S	Ś	Source C	ontrol 2	2018.1.1		
	Summary of Resu	lts fo	r 100 ye	ear Retu	rn Perio	d (+20%)	-
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth I	nfiltrati	on Volume		
		(m)	(m)	(l/s)	(m³)		
	30 min Winte	~ 26 171	5 0 775	7	.9 146.2	ОК	
	60 min Winte				.9 146.2		
	120 min Winte				.3 197.7		
	180 min Winte				.4 201.9		
	240 min Winte	r 36.680	0.980	9	.3 200.4		
	360 min Winte	c 36.660	0.960	9	.2 195.0	ОК	
	480 min Winte	r 36.633	3 0.933	9	.0 187.3		
	600 min Winte	r 36.600	0.900	8	.8 178.5	O K	
	720 min Winte				.5 169.6	O K	
	960 min Winte				.1 152.7		
	1440 min Winte				.3 124.9		
	2160 min Winte				.3 93.5		
	2880 min Winte				.5 70.7		
	4320 min Winte				.5 40.7		
	5760 min Winte 7200 min Winte				.8 22.3 .3 10.7		
	8640 min Winte				.9 6.5		
	10080 min Winte				.6 5.8		
	Sto		Rain (mm/hr)	Volume	Time-Peak (mins)		
	Eve	nt		Volume (m³)			
	Eve 30 mi 60 mi	e nt n Winter n Winter	(mm/hr) 72.924 46.096	Volume (m ³) 0.0 0.0	(mins) 32 60		
	30 mi 60 mi 120 mi	n Winter n Winter n Winter	(mm/hr) 72.924 46.096 28.170	Volume (m ³) 0.0 0.0 0.0	(mins) 32 60 118		
	30 mi 60 mi 120 mi 180 mi	n Winter n Winter n Winter n Winter	(mm/hr) c 72.924 c 46.096 c 28.170 c 20.837	Volume (m ³) 0.0 0.0 0.0 0.0	(mins) 32 60 118 170		
	30 mi 60 mi 120 mi 180 mi 240 mi	n Winter n Winter n Winter n Winter n Winter	(mm/hr) c 72.924 c 46.096 c 28.170 c 20.837 c 16.722	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	(mins) 32 60 118 170 196		
	30 mi 60 mi 120 mi 180 mi 240 mi 360 mi	n Winten n Winten n Winten n Winten n Winten n Winten	(mm/hr) c 72.924 c 46.096 c 28.170 c 20.837 c 16.722 c 12.192	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 32 60 118 170 196 272		
	30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi	n Winter n Winter n Winter n Winter n Winter	(mm/hr) c 72.924 c 46.096 c 28.170 c 20.837 c 16.722 c 12.192 c 9.749	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 32 60 118 170 196 272 348		
	30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi	n Winten n Winten n Winten n Winten n Winten n Winten n Winten	(mm/hr) c 72.924 c 46.096 c 28.170 c 20.837 c 16.722 c 12.192 c 9.749 c 8.189	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 32 60 118 170 196 272		
	30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi	n Winten n Winten n Winten n Winten n Winten n Winten n Winten	(mm/hr) (mm/hr) (mm/hr) (10,096 (28,170 (20,837 (16,722 (12,192 (12	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 32 60 118 170 196 272 348 422		
	30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi	n Winten n Winten n Winten n Winten n Winten n Winten n Winten n Winten	(mm/hr) c 72.924 c 46.096 c 28.170 c 20.837 c 16.722 c 12.192 c 9.749 c 8.189 c 7.099 c 5.662	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 32 60 118 170 196 272 348 422 498		
	30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi	n Winten n Winten n Winten n Winten n Winten n Winten n Winten n Winten n Winten	(mm/hr) c 72.924 c 46.096 c 28.170 c 20.837 c 16.722 c 12.192 c 9.749 c 8.189 c 7.099 c 5.662 c 4.109	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 32 60 118 170 196 272 348 422 498 642		
	30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi	n Winten n Winten	(mm/hr) c 72.924 c 46.096 c 28.170 c 20.837 16.722 c 12.192 c 9.749 c 8.189 c 7.099 c 5.662 c 4.109 c 2.977 c 2.366	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 32 60 118 170 196 272 348 422 498 642 912 1316 1696		
	30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi	n Winten n Winten	(mm/hr) (mm/hr) (mm/hr) (10,000 (10	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 32 60 118 170 196 272 348 422 498 642 912 1316 1696 2420		
	30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi	n Winten n Winten	(mm/hr) (Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 32 60 118 170 196 272 348 422 498 642 912 1316 1696 2420 3120		
	30 mi 60 mi 120 mi 120 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi 5760 mi 7200 mi	n Winten n Winten	(mm/hr) (Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 32 60 118 170 196 272 348 422 498 642 912 1316 1696 2420 3120 3816		
	30 mi 60 mi 120 mi 120 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi 5760 mi 7200 mi	n Winten n Winten	(mm/hr) (Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 32 60 118 170 196 272 348 422 498 642 912 1316 1696 2420 3120		

Weetwood		Page 3
Joseph's Well		
Hanover Walk		
Leeds, LS3 1AB		Micro
Date 06/11/2018 13:36	Designed by KeelyBonser	Drainage
File 2018-11-06 4322 Infiltr	Checked by	Diamage
XP Solutions	Source Control 2018.1.1	
<u> </u>	ainfall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	100 Cv (Summer) 0.	750
	land and Wales Cv (Winter) 0.	
M5-60 (mm)	19.000 Shortest Storm (mins)	15
Ratio R Summer Storms	0.381 Longest Storm (mins) 10	
Summer Storms	Yes Climate Change %	+20
T	ime Area Diagram	
То	tal Area (ha) 0.510	
	Time (mins) Area	
F	'rom: To: (ha)	
	0 4 0.510	

©1982-2018 Innovyze

	Page 4
	Mirro
Designed by KeelyBonser	
Checked by	Diamage
Source Control 2018.1.1	
	Checked by

Model Details

Storage is Online Cover Level (m) 37.000

Infiltration Basin Structure

Invert Level (m) 35.700 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.15000

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 135.0 1.300 343.4

APPENDIX D:

Option 1: Surface Water Attenuation - Sensitivity

Weetwood							
oseph's We	11						
anover Walł	k						
eeds, LS3 1	1AB						
ate 06/11/2			ח	asianad	by Keel	vBonser	
	1-06 4322 Int	€;1+~		-	_	ybonser	
				hecked	-	010 1 1	
P Solutions	S		S	ource C	ontrol 2	018.1.1	
	Cummonu of T	0.0.0.1+	a fam	100	an Datum	n Domio	a (140%)
	Summary of F	kesuit	LS IOT	100 ye	ar Retur	n Perio	a (+40%)
		Half	- Drain	Time : 2	232 minute	S.	
				12			
	Storm		Max	Max	Max	Max	Status
	Event			-	nfiltratio		
			(m)	(m)	(1/s)	(m³)	
	15 min S	ummer	36.355	0.655	7.	0 117.6	ОК
	30 min S				8.		
	60 min S	ummer	36.619	0.919	8.	9 183.7	O K
	120 min S				9.		
	180 min S [.]				9.		
	240 min S				9.		
	360 min S				9.		
	480 min S				9.		
	600 min S [.] 720 min S [.]				9. 9.		
	720 min S 960 min S				9. 8.		
	1440 min S				°. 8.		
	2160 min S				o. 7.		
	2880 min S				6.		
	4320 min S				5.		
	5760 min S	ummer	36.047	0.347	5.		
	7200 min S	ummer	35.964	0.264	4.	5 40.1	ОК
	8640 min S	ummer	35.898	0.198	4.		
	10080 min S					7 21.0	
	15 min W	inter	36.418	0.718	7.	5 132.2	ОК
		Stor		Rain			
		Event	E	(mm/hr)		(mins)	
					(m³)		
	1	5 min	Summer	128.392	0.0	18	
			Summer Summer	128.392 85.078	0.0	18 33	
	3	0 min 0 min	Summer Summer				
	3 6 12	0 min 0 min 0 min	Summer Summer Summer	85.078 53.779 32.864	0.0 0.0 0.0	33 62 120	
	3 6 12 18	0 min 0 min 0 min 0 min	Summer Summer Summer Summer	85.078 53.779 32.864 24.310	0.0 0.0 0.0 0.0	33 62 120 164	
	3 6 12 18 24	0 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509	0.0 0.0 0.0 0.0 0.0	33 62 120 164 192	
	3 6 12 18 24 36	0 min 0 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224	0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258	
	3 6 12 18 24 36 48	0 min 0 min 0 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373	0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326	
	3 6 12 18 24 36 48 60	0 min 0 min 0 min 0 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396	
	3 6 12 18 24 36 48 60 72	0 min 0 min 0 min 0 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554 8.282	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396 464	
	3 6 12 18 24 36 48 60 72 96	0 min 0 min 0 min 0 min 0 min 0 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554 8.282 6.605	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396 464 600	
	3 6 12 18 24 36 48 60 72 96 144	0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554 8.282 6.605 4.794	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396 464 600 866	
	3 6 12 18 24 36 48 60 72 96 144 216	0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554 8.282 6.605	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396 464 600	
	3 6 12 18 24 36 48 60 72 96 144 216 288	0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554 8.282 6.605 4.794 3.473	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396 464 600 866 1256	
	3 6 12 18 24 36 48 60 72 96 144 216 288 432	0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554 8.282 6.605 4.794 3.473 2.760	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396 464 600 866 1256 1640	
	3 6 12 18 24 36 48 60 72 96 144 216 288 432 576	0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554 8.282 6.605 4.794 3.473 2.760 1.993	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396 464 600 866 1256 1640 2376	
	3 6 12 18 24 36 48 60 72 96 144 216 288 432 576 720	0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554 8.282 6.605 4.794 3.473 2.760 1.993 1.581	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396 464 600 866 1256 1640 2376 3112	
	3 6 12 18 24 36 48 60 72 96 144 216 288 432 576 720 864 1008	0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554 8.282 6.605 4.794 3.473 2.760 1.993 1.581 1.320 1.138 1.004	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396 464 600 866 1256 1640 2376 3112 3816 4504 5240	
	3 6 12 18 24 36 48 60 72 96 144 216 288 432 576 720 864 1008	0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	85.078 53.779 32.864 24.310 19.509 14.224 11.373 9.554 8.282 6.605 4.794 3.473 2.760 1.993 1.581 1.320 1.138	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	33 62 120 164 192 258 326 396 464 600 866 1256 1640 2376 3112 3816 4504	

Joseph's We								Page 2
Hanover Wal								
Leeds, LS3	1AB							Micro
Date 06/11/		Designed						
File 2018-11-06 4322 Infiltr				Checked	Draina			
XP Solutions				Source C				
	Summar	ry of Resu	ults fo	or 100 ye				
	Storm Max			Max Max Max Status				
		Event	Level				Status	
	_		(m)	(m)	(1/s)	(m ³)		
		min Winter				171.4	O K	
		min Winter				207.5	O K	
		min Winter				234.1	O K	
		min Winter					Flood Risk	
		min Winter					Flood Risk	
		min Winter				234.2	ОК	
		min Winter				226.5		
		min Winter				217.3	OK	
		min Winter				207.6	ОК	
		min Winter				188.7		
		min Winter min Winter			8.2		OK	
		min Winter min Winter			6.3	120.7 94.1	ОК	
		min Winter			5.1		O K	
		min Winter			4.3		0 K	
		min Winter			3.7		ОК	
	1200	MILLICOL	55.015	0.115	5.7	21.0	0 10	
	8640	min Winter	35.781	0.081	3.3	11.4	ОК	
		min Winter min Winter			3.3 3.0	11.4 6.7	0 K 0 K	
		min Winter St		0.049 Rain	3.0 Flooded 9 Volume	6.7	0 К	
		min Winter St	35.749 orm	0.049 Rain	3.0 Flooded	6.7 Time-Pea	0 К	
		min Winter St Ev 30 m:	35.749 orm ent in Winte	0.049 Rain (mm/hr) er 85.078	3.0 Flooded (Volume (m ³)	6.7 Time-Pea (mins)	0 К	
		min Winter St Ev 30 m: 60 m:	35.749 orm ent in Winte	0.049 Rain (mm/hr) er 85.078 er 53.779	3.0 Flooded 9 Volume (m ³) 0.0 0.0	6.7 Time-Pea (mins)	ок ак 32 52	
		min Winter St Ev 30 m: 60 m: 120 m:	35.749 orm ent in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 53.779 er 32.864	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0	6.7 Time-Pea (mins) (11	ОК ак 32 52 18	
		min Winter St Ev 30 m: 60 m: 120 m: 180 m:	35.749 orm ent in Winte in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 53.779 er 32.864 er 24.310	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0 0.0 0.0	6.7 Time-Pea (mins)	ОК ак 32 52 18 72	
		min Winter St Ev 30 m: 60 m: 120 m: 180 m: 240 m:	35.749 orm ent in Winte in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 53.779 er 32.864 er 24.310 er 19.509	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	6.7 Time-Pea (mins)	ОК ак 32 52 18 72 16	
		min Winter St Ev 30 m: 120 m: 180 m: 240 m: 360 m:	35.749 orm ent in Winte in Winte in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 85.078 er 32.864 er 24.310 er 19.509 er 14.224	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) (11 12 21 21 21	ОК ак 32 52 18 72 16 74	
		min Winter St Ev 30 m: 60 m: 120 m: 180 m: 240 m: 360 m: 480 m:	35.749 orm ent in Winte in Winte in Winte in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 85.078 er 32.864 er 24.310 er 19.509 er 14.224 er 11.373	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) 3 (11 12 21 21 23 35	ОК ак 32 52 18 72 16 74 52	
		min Winter St Ev 30 m: 60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m:	35.749 orm ent in Winte in Winte in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 53.779 er 32.864 er 24.310 er 19.509 er 14.224 er 11.373 er 9.554	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) 3 4 11 12 21 25 42	ОК ак 32 52 18 72 16 74	
		min Winter St Ev 30 m: 60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m:	35.749 orm ent in Winte in Winte in Winte in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 85.078 er 32.864 er 24.310 er 19.509 er 14.224 er 11.373 er 9.554 er 8.282	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) 3 4 11 12 21 25 42	O K ak 32 52 18 72 16 74 52 28 00	
		min Winter St Ev 30 m: 60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m:	35.749 orm ent in Winte in Winte in Winte in Winte in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 85.078 er 32.864 er 24.310 er 19.509 er 14.224 er 11.373 er 9.554 er 8.282 er 6.605	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) (11 21 21 25 42 50	O K ak 32 52 18 72 16 74 52 28 00 46	
		min Winter St Ev 30 m: 60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m:	35.749 orm ent in Winte in Winte in Winte in Winte in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 85.078 er 32.864 er 24.310 er 19.509 er 14.224 er 11.373 er 9.554 er 8.282 er 6.605 er 4.794	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) (11 12 21 21 25 42 50 64	O K ak 32 52 18 72 16 74 52 28 00 46 24	
		min Winter St Ev 30 m: 60 m: 120 m: 180 m: 240 m: 360 m: 480 m: 600 m: 720 m: 960 m: 1440 m: 2160 m: 2880 m:	35.749 orm ent in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 85.078 er 53.779 er 32.864 er 24.310 er 19.509 er 14.224 er 11.373 er 9.554 er 8.282 er 6.605 er 4.794 er 3.473 er 2.760	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) (11 12 21 21 21 25 42 50 64 92	O K ak 32 52 18 72 16 74 52 28 00 46 24 20	
		min Winter St Ev 30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m	35.749 orm ent in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	Rain (mm/hr) er 85.078 er 53.779 er 32.864 er 24.310 er 19.509 er 14.224 er 11.373 er 9.554 er 8.282 er 6.605 er 4.794 er 3.473 er 2.760 er 1.993	3.0 Flooded 9 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) (11 12 21 21 25 42 50 64 92 132	O K ak 32 52 18 72 16 74 52 28 00 46 24 20 00	
		min Winter St Ev 30 m 60 m 120 m 120 m 240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2880 m 4320 m 5760 m	35.749 orm ent in Winte in Winte	0.049 Rain (mm/hr) er 85.078 er 85.078 er 53.779 er 32.864 er 24.310 er 19.509 er 14.224 er 11.373 er 9.554 er 8.282 er 6.605 er 4.794 er 3.473 er 2.760 er 1.993 er 1.581	3.0 Flooded 7 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) (mins) (11 12 21 25 42 50 64 92 132 170 242 316	O K ak 32 52 18 72 16 74 52 28 00 46 24 20 00 24 58	
		min Winter St Ev 30 m 60 m 120 m 120 m 240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2880 m 4320 m 5760 m	35.749 orm ent in Winte in Winte	Rain (mm/hr) er 85.078 er 53.779 er 32.864 er 24.310 er 19.509 er 14.224 er 11.373 er 9.554 er 8.282 er 6.605 er 4.794 er 3.473 er 2.760 er 1.993 er 1.581 er 1.320	3.0 Flooded (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) (mins) 3 (11 17 21 27 35 42 50 64 92 132 170 242 316 388	O K ak 32 52 18 72 16 74 52 28 00 46 24 20 00 24 58 88	
		min Winter St Ev 30 m 60 m 120 m 120 m 240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2880 m 4320 m 5760 m	35.749 orm ent in Winte in Winte	Rain (mm/hr) er 85.078 er 53.779 er 32.864 er 24.310 er 19.509 er 14.224 er 11.373 er 9.554 er 8.282 er 6.605 er 4.794 er 3.473 er 2.760 er 1.993 er 1.581 er 1.320 er 1.138	3.0 Flooded 7 Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	6.7 Time-Pea (mins) (mins) (11 12 21 25 42 50 64 92 132 170 242 316	O K ak 32 52 18 72 16 74 52 28 00 16 24 58 88 76	

Weetwood		Page 3
Joseph's Well		
Hanover Walk		
Leeds, LS3 1AB		Micco
Date 06/11/2018 13:44	Designed by KeelyBonser	– Micro Drainage
File 2018-11-06 4322 Infiltr	Checked by	Diamage
XP Solutions	Source Control 2018.1.1	
R	ainfall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	100 Cv (Summer) 0.	
	land and Wales Cv (Winter) 0.	
M5-60 (mm)	19.000 Shortest Storm (mins)	15
Ratio R	0.381 Longest Storm (mins) 10	
Summer Storms	Yes Climate Change %	+40
Ti	lme Area Diagram	
То	tal Area (ha) 0.510	
	Fime (mins) Area	
F	rom: To: (ha)	
	0 4 0.510	

Weetwood		Page 4
Joseph's Well		
Hanover Walk		
Leeds, LS3 1AB		Mirro
Date 06/11/2018 13:44	Designed by KeelyBonser	Dcainago
File 2018-11-06 4322 Infiltr	Checked by	Diamage
XP Solutions	Source Control 2018.1.1	

Model Details

Storage is Online Cover Level (m) 37.000

Infiltration Basin Structure

Invert Level (m) 35.700 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.15000

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 135.0 1.300 343.4

APPENDIX E:

Option 2: Surface Water Attenuation - Storage Volume Calculation

Weetwood									Page 1
Joseph's Well									
Hanover Walk									
Leeds, LS3 1AB									
	2.1'	7		Deet	anod	hu Voo	lerDon		- Micro
Date 06/11/2018 1					-	by Keel	Гувоп	ser	Draina
File 2018-11-06 4	:322	Bas	in 1		cked b	-			
XP Solutions				Soui	cce Co	ntrol 2	2018.	1.1	
Summa	.ry c	of R	esults	for 1	00 yea	r Retu	rn Pe	riod (+20%)
		Stor		Max	Max	Max	Max	Status	
		Ever	IT	Level	Depth (m)	Control	(m ³)	e	
				(m)	(111)	(l/s)	(11.5)		
	15	min	Summer	36.233	0.533	4.7	100.	5 ОК	
				36.361		4.7			
				36.474			160.		
				36.559		4.7			
				36.588 36.592		4.7			
				36.592		4.7 4.7			
				36.573		4.7			
				36.529		4.7			
				36.511		4.7			
	960	min	Summer	36.475	0.775	4.7	160.	6 ОК	
	1440	min	Summer	36.403	0.703	4.7	141.	8 ОК	
				36.285		4.7			
				36.151		4.7	82.		
				35.948 35.822		4.7	41.		
				35.822		4.6 4.3	19. 8.		
				35.721		4.0	3.		
				35.707		3.6	1.		
	15	min	Winter	36.288	0.588	4.7	113.	з ок	
	30	min	Winter	36.427	0.727	4.7	148.	0 ОК	
		Stor		Rain			-	'ime-Peak	
		Even	t	(mm/hr)				(mins)	
					(m³)	(m ³	3)		
						(,		
	15	min	Summer	110.050			05.1	19	
			Summer Summer	110.050 72.924	0	.0 1		19 33	
	30 60	min min	Summer Summer	72.924 46.096	0	.0 1 .0 1 .0 1	05.1 39.3 76.3	33 62	
	30 60 120	min min min	Summer Summer Summer	72.924 46.096 28.170	0	.0 1 .0 1 .0 1 .0 2	05.1 39.3 76.3 15.3	33 62 122	
	30 60 120 180	min min min min	Summer Summer Summer	72.924 46.096 28.170 20.837		.0 1 .0 1 .0 1 .0 2 .0 2	05.1 39.3 76.3 15.3 39.0	33 62 122 182	
	30 60 120 180 240	min min min min min	Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722	0 0 0 0 0	.0 1 .0 1 .0 1 .0 2 .0 2	05.1 39.3 76.3 15.3 39.0 56.0	33 62 122 182 240	
	30 60 120 180 240 360	min min min min min min	Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2	05.1 39.3 76.3 15.3 39.0 56.0 79.8	33 62 122 182 240 344	
	30 60 120 180 240 360 480	min min min min min min	Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2	05.1 39.3 76.3 15.3 39.0 56.0	33 62 122 182 240	
	30 60 120 180 240 360 480 600	min min min min min min min	Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3	33 62 122 182 240 344 400	
	30 60 120 180 240 360 480 600 720	min min min min min min min min	Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749 8.189		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3 .0 3	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3 13.0	33 62 122 182 240 344 400 464	
	30 60 120 180 240 360 480 600 720 960	min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3 .0 3 .0 3	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3 13.0 25.9	33 62 122 182 240 344 400 464 528	
:	30 60 120 180 240 360 480 600 720 960 1440 2160	min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3 .0 3 .0 3 .0 3 .0 3 .0 4	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3 13.0 25.9 46.4 77.0 09.7	33 62 122 182 240 344 400 464 528 664 938 1360	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3 .0 3 .0 3 .0 3 .0 3 .0 4 .0 4	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3 13.0 25.9 46.4 77.0 09.7 34.0	33 62 122 182 240 344 400 464 528 664 938 1360 1704	
:	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3 .0 3 .0 3 .0 3 .0 3 .0 4 .0 4 .0 4	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3 13.0 25.9 46.4 77.0 09.7 34.0 70.4	33 62 122 182 240 344 400 464 528 664 938 1360 1704 2380	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 4 .0 4 .0 4 .0 4	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3 13.0 25.9 46.4 77.0 09.7 34.0 70.4 97.5	33 62 122 182 240 344 400 464 528 664 938 1360 1704 2380 3056	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3 .0 3 .0 3 .0 4 .0 4 .0 4 .0 5	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3 13.0 25.9 46.4 77.0 09.7 34.0 70.4 97.5 19.0	33 62 122 182 240 344 400 464 528 664 938 1360 1704 2380 3056 3744	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131 0.976		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3 .0 3 .0 3 .0 4 .0 4 .0 4 .0 5 .0 5	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3 13.0 25.9 46.4 77.0 09.7 34.0 70.4 97.5 19.0 37.3	33 62 122 182 240 344 400 464 528 664 938 1360 1704 2380 3056 3744 4408	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 0080	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3 .0 3 .0 3 .0 4 .0 4 .0 4 .0 5 .0 5 .0 5	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3 13.0 25.9 46.4 77.0 09.7 34.0 70.4 97.5 19.0	33 62 122 182 240 344 400 464 528 664 938 1360 1704 2380 3056 3744	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 0080 15	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	72.924 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131 0.976 0.861		.0 1 .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 3 .0 3 .0 3 .0 4 .0 4 .0 4 .0 5 .0 5 .0 5 .0 5 .0 5 .0 1	05.1 39.3 76.3 15.3 39.0 56.0 79.8 98.3 13.0 25.9 46.4 77.0 09.7 34.0 70.4 97.5 19.0 37.3 53.0	33 62 122 182 240 344 400 464 528 664 938 1360 1704 2380 3056 3744 4408 5136	

Weetwood							Page 2	
Joseph's Well								
Hanover Walk								
Leeds, LS3 1AB							Micco	$\overline{}$
Date 06/11/2018 13:	17	Des	laned by	y KeelyE	lonser			
File 2018-11-06 432.			cked by		011001		Drain	90
	Z BASIN I				0 1 1			_
XP Solutions		Soui	rce Cont	trol 201	8.1.1			
Cummo roz	of Results	for 1	00 11000	Poturn	Poriod	(1208)		
Summary	OI RESULLS	101 1	UU year	Recurn	Periou	(+20%)	-	
	Storm	Max	Max	Max M	lax Sta	tus		
	Event	Level	Depth Co	ontrol Vo	lume			
		(m)	(m)	(l/s) (1	m³)			
	0 min Winter			4.7 1		ОК		
	0 min Winter 0 min Winter			4.7 2 4.7 2		OK		
	0 min Winter					O K O K		
	50 min Winter			4.7 2: 4.7 2:		O K		
	0 min Winter			4.7 2		O K O K		
	0 min Winter			4.7 2		O K		
	0 min Winter			4.7 1		ОК		
	50 min Winter			4.7 1		ОК		
	0 min Winter			4.7 1		ОК		
216	0 min Winter	36.288	0.588	4.7 1	13.2	ΟK		
288	0 min Winter	36.080	0.380	4.7	67.3	ОК		
432	0 min Winter	35.818	0.118	4.6	18.8	ΟK		
576	50 min Winter	35.722	0.022	4.0	3.3	ΟK		
	00 min Winter			3.4		ΟK		
	0 min Winter 0 min Winter			2.9 2.6		ок ок		
	Storm	Rain		Discharg				
	Storm Event		Volume	Volume				
				-				
6		(mm/hr)	Volume (m³)	Volume (m ³)	(min			
12	Event 0 min Winter 0 min Winter	(mm/hr) 46.096	Volume (m ³) 0.0	Volume (m ³) 197.	(min 2	s)		
12 18	Event 0 min Winter 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837	Volume (m ³) 0.0 0.0 0.0	Volume (m ³) 197. 241. 267.	(min 2 4 8	6 2 120 178		
12 18 24	Event 0 min Winter 0 min Winter 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722	Volume (m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 197. 241. 267. 286.	(min 2 4 8 3	62 120 178 234		
12 18 24 36	Event 0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 197. 241. 267. 286. 313.	(min 2 4 8 3 4	62 120 178 234 346		
12 18 24 36 48	Event 0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 197. 241. 267. 286. 313. 334.	(min 2 4 8 3 4 0	62 120 178 234 346 450		
12 18 24 36 48 60	Event 0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 197. 241. 267. 286. 313. 334. 350.	(min 2 4 8 3 4 0 6	62 120 178 234 346 450 486		
12 18 24 36 48 60 72	Event 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365.	(min 2 4 8 3 4 0 6 0	62 120 178 234 346 450 486 560		
12 18 24 36 48 60 72 96	Event 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387.	(min 2 4 8 3 4 0 6 0 9	62 120 178 234 346 450 486 560 714		
12 18 24 36 48 60 72 96 144	Event 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422.	(min 2 4 8 3 4 0 6 0 9 6 2 2	62 120 178 234 346 450 486 560 714 .024		
12 18 24 36 48 60 72 96 144 216	Event 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459.	(min 2 4 8 3 4 0 6 0 9 6 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	62 120 178 234 346 450 486 560 714 .024 .472		
12 18 24 36 48 60 72 96 144 216 288	Event 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486.	(min 2 4 8 3 4 0 6 0 9 6 0 2 4 2 2 4	62 120 178 234 346 450 486 560 714 .024		
12 18 24 36 48 60 72 96 144 216 288 432	Event 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527.	(min 2 4 8 3 4 0 6 0 9 6 0 2 4 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	62 120 178 234 346 450 486 560 714 .024 .472 .788		
12 18 24 36 48 60 72 96 144 216 288 432 576	Event 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527. 557.	(min 2 4 8 3 4 0 6 0 9 6 0 2 2 2 2 2	62 120 178 234 346 450 486 560 714 .024 .472 .788 2380		
12 18 24 36 48 60 72 96 144 216 288 432 576 720	Event 0 min Winter 0 min Winter	(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527. 557. 581.	(min 2 4 8 3 4 0 6 0 9 6 1 0 2 2 2 2 4 3	62 120 178 234 346 450 486 560 714 .024 .472 .788 2380 2944		
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 0 min Winter 0 min Winter	<pre>(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527. 557. 581. 601.	(min 2 4 8 3 4 0 6 0 9 6 1 0 2 2 2 2 2 4 3 8	62 120 178 234 346 450 486 560 714 .024 .472 .788 2380 2944 8672		
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 0 min Winter 0 min Winter	<pre>(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131 0.976</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527. 557. 581. 601.	(min 2 4 8 3 4 0 6 0 9 6 1 0 2 2 2 2 2 4 3 8	62 120 178 234 346 450 486 560 714 .024 .472 .788 2380 2944 3672 0		
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 0 min Winter 0 min Winter	<pre>(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131 0.976</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527. 557. 581. 601.	(min 2 4 8 3 4 0 6 0 9 6 1 0 2 2 2 2 2 4 3 8	62 120 178 234 346 450 486 560 714 .024 .472 .788 2380 2944 3672 0		
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 0 min Winter 0 min Winter	<pre>(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131 0.976</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527. 557. 581. 601.	(min 2 4 8 3 4 0 6 0 9 6 1 0 2 2 2 2 2 4 3 8	62 120 178 234 346 450 486 560 714 .024 .472 .788 2380 2944 3672 0		
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 0 min Winter 0 min Winter	<pre>(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131 0.976</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527. 557. 581. 601.	(min 2 4 8 3 4 0 6 0 9 6 1 0 2 2 2 2 2 4 3 8	62 120 178 234 346 450 486 560 714 .024 .472 .788 2380 2944 3672 0		
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 0 min Winter 0 min Winter	<pre>(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131 0.976</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527. 557. 581. 601.	(min 2 4 8 3 4 0 6 0 9 6 1 0 2 2 2 2 2 4 3 8	62 120 178 234 346 450 486 560 714 .024 .472 .788 2380 2944 3672 0		
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 0 min Winter 0 min Winter	<pre>(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131 0.976</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527. 557. 581. 601.	(min 2 4 8 3 4 0 6 0 9 6 1 0 2 2 2 2 4 3 8	62 120 178 234 346 450 486 560 714 .024 .472 .788 2380 2944 3672 0		
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 0 min Winter 0 min Winter	<pre>(mm/hr) 46.096 28.170 20.837 16.722 12.192 9.749 8.189 7.099 5.662 4.109 2.977 2.366 1.709 1.355 1.131 0.976</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 197. 241. 267. 286. 313. 334. 350. 365. 387. 422. 459. 486. 527. 557. 581. 601.	(min 2 4 8 3 4 0 6 0 9 6 1 0 2 2 2 2 4 3 8	62 120 178 234 346 450 486 560 714 .024 .472 .788 2380 2944 3672 0		

Weetwood		Page 3
Joseph's Well		
Hanover Walk		
Leeds, LS3 1AB		_ Micro
Date 06/11/2018 13:17	Designed by KeelyBonser	Drainage
File 2018-11-06 4322 Basin 1	Checked by	Diamage
XP Solutions	Source Control 2018.1.1	
R	ainfall Details	
Rainfall Model Return Period (years) Region Eng M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms 100 Cv (Summer) (land and Wales Cv (Winter) (19.000 Shortest Storm (mins) 0.381 Longest Storm (mins) 1 Yes Climate Change %	0.840 15 .0080
<u></u>	ime Area Diagram	
То	tal Area (ha) 0.510	
	Time (mins) Area	
E	'rom: To: (ha)	
	0 4 0.510	

©1982-2018 Innovyze

Weetwood					Page 4
Joseph's Well					
Hanover Walk					
Leeds, LS3 1AB					Micro
Date 06/11/2018 13:17	Designed	d by Ke	elyBonser		
File 2018-11-06 4322 Basin 1	Checked	by			Drainage
XP Solutions	Source (Control	2018.1.1		
<u>M</u>	lodel Det	ails			
		1	() 27 000		
Storage is On	line Cover	r Level	(m) 37.000		
Tank	or Pond S	Structu	ire		
Inver	t Level (r	m) 35.70	0		
Depth (m) Are	a (m²) Dej	pth (m)	Area (m²)		
0.000	151.0	1.300	368.7		
	Ι				
Hydro-Brake®	Optimum	Outflo	w Control		
IInit	Reference	MD-SHE-	-0101-4700-3	1100-4700	
	n Head (m)		0101 1/00	1.100	
	Flow (l/s)			4.7	
	Flush-Flo™			alculated	
Δ	oplication		ise upstrea	n storage Surface	
	Available			Yes	
	meter (mm)			101	
	Level (m)			35.600	
Minimum Outlet Pipe Dias				150	
Suggested Manhole Dia	meter (mm)			1200	
Control Po	ints	Head (m) Flow (l/s)	
Design Point (Ca	lculated)	1.10	0 4.	7	
F	lush-Flo™	0.32	5 4.	7	
	Kick-Flo®				
Mean Flow over H	ead Range		- 4.	1	
The hydrological calculations have b	een based	on the H	Head/Discha:	rge relatio	onship for the
Hydro-Brake® Optimum as specified.					
Hydro-Brake Optimum® be utilised the invalidated	n these st	corage ro	outing calc	lations w	ill be
Depth (m) Flow (1/s) Depth (m) Flow	(I/s) Dej	pth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100 3.3 1.200	4.9	3.000	7.5	7.000	11.2
0.200 4.5 1.400	5.3	3.500	8.1	7.500	11.6
0.300 4.7 1.600 0.400 4.7 1.800	5.6 5.9	4.000 4.500	8.6 9.1	8.000 8.500	12.0 12.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.9	4.500 5.000	9.1 9.6	8.500 9.000	12.3
0.600 4.3 2.200	6.5	5.500	10.0	9.000	12.8
0.800 4.1 2.400	6.8	6.000	10.0	5.500	10.0
1.000 4.5 2.600	7.0	6.500	10.4		
	I				
©198	2-2018 I	nnovvze	e		

APPENDIX F:

Option 2: Surface Water Attenuation - Sensitivity

Weetwood									Page 1
Joseph's Well									
Hanover Walk									
Leeds, LS3 1AB									Micco
Date 06/11/2018	13:24			Desi	aned k	oy Keel	vBons	er	- Micro
File 2018-11-06			in 1		cked by	-	1		Drainage
	4JZZ	Das	±11 ±••				010 1	1	
XP Solutions				Sour	rce Cor	ntrol 2	018.1	• 1	
~				с 1	~ ~		_		
Sumn	hary of	t R	esults	for 10	00 yea:	r Retui	n Per	iod (+40%)	
								-	
		Stor		Max	Max Domth	Max	Max	Status	
	1	Even		(m)	(m)	Control (1/s)	(m ³)		
				(,	(,	(1)0)	()		
	15	min	Summer	36.309	0.609	4.7	118.2	O K	
				36.451			154.3	O K	
				36.578			189.4	O K	
				36.678			218.9	O K	
				36.715			230.4	OK	
				36.726 36.716		4.7 4.7	234.0 230.8	ОК	
				36.694			230.8		
				36.673		4.7		O K	
				36.654			217.4	O K	
				36.619			201.3		
				36.553		4.7	182.2	ОК	
	2160	min	Summer	36.454	0.754	4.7	155.0	O K	
	2880	min	Summer	36.351	0.651	4.7	128.6	O K	
	4320	min	Summer	36.107	0.407	4.7	73.0	O K	
				35.934		4.7	38.9		
				35.824		4.6	19.7		
				35.760 35.726		4.3	9.3	ОК	
				36.368		4.1 4.7	4.0 132.9		
				36.523		4.7	173.9		
				Dein	-1 1 -				
		Stor Iven		Rain (mm/hr)	Volume	d Discha Volu	-	me-Peak (mins)	
	E	ven	L	(1111)	(m ³)			(mills)	
					()	·	,		
	15 1	min	Summer	128.392	0.	0 12	22.7	19	
			Summer	85.078	0.		62.6	33	
				53.779			05.8	64	
			Summer	32.864			51.1	122	
			Summer	24.310			79.0	182	
			Summer Summer	19.509			98.6 26.5	242	
			Summer	14.224 11.373			26.5 18.0	360 418	
			Summer	9.554			48.0 65.2	418	
			Summer	8.282			79.9	544	
			Summer	6.605)4.2	676	
			Summer	4.794			40.1	954	
	2160 1	min	Summer	3.473			78.5	1364	
	2880 1	min	Summer	2.760	0.	0 50	06.6	1784	
			Summer	1.993			49.1	2468	
			Summer	1.581			30.2	3120	
			Summer	1.320)5.7	3816	
			Summer	1.138			26.7	4488	
			Summer	1.004			45.1	5144	
			Winter Winter	128.392 85.078			37.5 32.1	19 33	
	501		MINCEL	55.070	0.	- 10	~ C • I		
			©1	982-20	18 Inn	ovyze			
				= 0		<u> </u>			

T 1. J							Page 2
Joseph's Well							
Hanover Walk							
Leeds, LS3 1AB							Micc
Date 06/11/201		De	sianc	d by K	eelyBor	sor	
			-	-	еетурот	ISEL	Drair
	6 4322 Basin 1.		necked				
XP Solutions		Sc	ource	Contro	1 2018.	.1.1	
Sur	mmary of Results	s for	100 3	year Re	eturn Pe	eriod (+40%)	-
	Storm	Max	Max	Max	Max	Status	
	Event		-		L Volume		
		(m)	(m)	(l/s)	(m³)		
	60 min Winter 3	36.662	0.962	4.	7 214.1	ОК	
	120 min Winter 3	36.775	1.075		3 249.5	O K	
	180 min Winter 3	36.820	1.120	4.9	9 264.4	Flood Risk	
	240 min Winter 3	36.838	1.138	5.0		Flood Risk	
	360 min Winter 3					Flood Risk	
	480 min Winter 3					Flood Risk	
	600 min Winter 3 720 min Winter 3				256.8249.0	ок ок	
	960 min Winter 3				3 249.0 3 234.7		
	1440 min Winter 3				7 206.9		
	2160 min Winter 3				7 165.7		
	2880 min Winter 3	36.334	0.634		7 124.5		
	4320 min Winter 3				44.9	O K	
	5760 min Winter 3	35.783	0.083	4.4	1 13.0		
			0 0 1 0				
	7200 min Winter	35.719	0.019	4.0	2.9		
	8640 min Winter 3 10080 min Winter 3	35.702	0.002	3.4	2.9 4 0.3 0 0.0		
	8640 min Winter 3	35.702	0.002	3.4	1 0.3	ОК	
	8640 min Winter 3	35.702	0.002	3.4	1 0.3	ОК	
	8640 min Winter 3 10080 min Winter 3	35.702 35.700	0.002	3.4 3.(4 0.3 0 0.0	0 K 0 K	
	8640 min Winter 3 10080 min Winter 3 Storm	35.702 35.700 Rai	0.002 0.000 n Flc	3.4 3.(boded Di	4 0.3 0 0.0 scharge	0 K 0 K Time-Peak	
	8640 min Winter 3 10080 min Winter 3	35.702 35.700 Rai	0.002 0.000 n Flc nr) Vo	3.4 3.0 Doded Di lume	4 0.3 0 0.0 scharge Jolume	0 K 0 K	
	8640 min Winter 3 10080 min Winter 3 Storm	35.702 35.700 Rai	0.002 0.000 n Flc nr) Vo	3.4 3.(boded Di	4 0.3 0 0.0 scharge	0 K 0 K Time-Peak	
	8640 min Winter 3 10080 min Winter 3 Storm	35.702 35.700 Rai (mm/h	0.002 0.000 n Flc hr) Vo	3.4 3.0 Doded Di lume	4 0.3 0 0.0 scharge Jolume	0 K 0 K Time-Peak	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter	35.702 35.700 Rai (mm/h 53.7 32.8	0.002 0.000 n Flc nr) Vo (1 779 364	3.4 3.0 Doded Di lume M m ³)	4 0.3 0 0.0 scharge <i>folume</i> (m ³) 230.0 281.4	O K O K Time-Peak (mins)	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 180 min Winter	Rai (mm/r 53.7 32.8 24.3	0.002 0.000 n Flc nr) Vo (1 779 364 310	3.4 3.0 Doded Di lume T m ³) 0.0 0.0 0.0	4 0.3 0 0.0 scharge Jolume (m ³) 230.0 281.4 312.4	0 K 0 K Time-Peak (mins) 62 120 178	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	Rai (mm/r 53.7 32.8 24.3 19.5	0.002 0.000 n Flc nr) Vo (1 779 864 810 509	3.4 3.0 boded Di lume T m ³) 0.0 0.0 0.0 0.0 0.0	4 0.3 0 0.0 scharge <i>folume</i> (m ³) 230.0 281.4 312.4 334.4	0 K 0 K Time-Peak (mins) 62 120 178 236	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	Rai (mm/r 53.7 32.8 24.3 19.5 14.2	0.002 0.000 n Flc nr) Vo (1 779 864 810 509 224	3.4 3.0 boded Di lume T m ³) 0.0 0.0 0.0 0.0 0.0 0.0	4 0.3 0 0.0 scharge <i>folume</i> (m ³) 230.0 281.4 312.4 334.4 365.8	0 K 0 K Time-Peak (mins) 62 120 178 236 348	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	Rai (mm/r 53.7 32.8 24.3 19.5 14.2 11.3	0.002 0.000 n Flc nr) Vo (1 364 310 509 224 373	3.4 3.0 boded Di lume T m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 0.3 0 0.0 scharge <i>folume</i> (m ³) 230.0 281.4 312.4 334.4 365.8 389.8	0 K 0 K Time-Peak (mins) 62 120 178 236 348 456	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	Rai (mm/h 53.7 32.8 24.3 19.5 14.2 11.3 9.5	0.002 0.000 n Flc nr) Vo (1 364 310 509 224 373 554	3.4 3.0 boded Di lume T m ³) 0.0 0.0 0.0 0.0 0.0 0.0	4 0.3 0 0.0 scharge <i>folume</i> (m ³) 230.0 281.4 312.4 334.4 365.8	0 K 0 K Time-Peak (mins) 62 120 178 236 348	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter	Rai (mm/r 53.7 32.8 24.3 19.5 14.2 11.3 9.5 8.2	0.002 0.000 n Flc nr) Vo (1 779 864 810 509 824 873 554 882	3.4 3.0 boded Di lume T m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4 0.3 0 0.0 scharge <i>folume</i> (m ³) 230.0 281.4 312.4 334.4 365.8 389.8 409.3	0 K 0 K Time-Peak (mins) 62 120 178 236 348 456 550	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	Rai (mm/h 53.7 32.8 24.3 19.5 14.2 11.3 9.5 8.2 6.6	0.002 0.000 n Flc nr) Vo. (1 779 864 810 509 224 873 554 822 555	3.4 3.0 boded Di lume T m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4 0.3 0 0.0 scharge <i>folume</i> (m ³) 230.0 281.4 312.4 334.4 365.8 389.8 409.3 425.9	0 K 0 K Time-Peak (mins) 62 120 178 236 348 456 550 572	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter	Rai (mm/h 53.7 32.8 24.3 19.5 14.2 11.3 9.5 8.2 6.6 4.7 3.4	0.002 0.000 n Flc nr) Vo. (1) 779 864 810 509 224 873 554 822 555 294 173	3.4 3.0 boded Di lume T m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4 0.3 0 0.0 scharge <i>folume</i> (m ³) 230.0 281.4 312.4 34.4 365.8 389.8 409.3 425.9 452.6 492.6 535.4	0 K 0 K Time-Peak (mins) 62 120 178 236 348 456 550 572 728 1038 1476	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter	Rai (mm/h 53.7 32.8 24.3 19.5 14.2 11.3 9.5 8.2 6.6 4.7 3.4 2.7	0.002 0.000 n Flc nr) Vo. (1) 779 864 810 509 224 873 554 882 555 294 173 760	3.4 3.0 boded Di lume M m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4 0.3 0 0.0 scharge /olume (m ³) 230.0 281.4 312.4 334.4 365.8 389.8 409.3 425.9 452.6 492.6 535.4 567.5	0 K 0 K Time-Peak (mins) 62 120 178 236 348 456 550 572 728 1038 1476 1928	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 280 min Winter	Rai (mm/h 53.7 32.8 24.3 19.5 14.2 11.3 9.5 8.2 6.6 4.7 3.4 2.7 1.5	0.002 0.000 n Flc nr) Vo. (1779 364 310 509 224 373 554 282 505 794 173 760 393	3.4 3.0 boded Di lume N m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4 0.3 0 0.0 scharge /olume (m ³) 230.0 281.4 312.4 334.4 365.8 389.8 409.3 425.9 452.6 492.6 535.4 567.5 614.7	0 K 0 K Time-Peak (mins) 62 120 178 236 348 456 550 572 728 1038 1476 1928 2512	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 280 min Winter 5760 min Winter	Rai (mm/h 53.7 32.8 24.3 19.5 14.2 11.3 9.5 8.2 6.6 4.7 3.4 2.7 1.5	0.002 0.000 n Flc nr) Vo. (1779 364 310 509 224 373 554 282 505 794 173 760 993 581	3.4 3.0 boded Di lume N m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4 0.3 0 0.0 scharge /olume (m ³) 230.0 281.4 312.4 334.4 365.8 389.8 409.3 425.9 452.6 492.6 535.4 567.5 614.7 650.1	<pre> K K K K K Time-Peak (mins)</pre>	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 280 min Winter 5760 min Winter 7200 min Winter	Rai (mm/H 53.7 32.8 24.3 19.5 14.2 11.3 9.5 8.2 6.6 4.7 3.4 2.7 1.5 1.5 1.3	0.002 0.000 n Flc nr) Vo. (1779) 364 310 554 324 373 554 324 373 554 325 554 326 554 327 554 328 555 554 328 555 564 328 554 328 555 554 328 555 554 328 555 554 328 555 554 328 555 554 328 555 554 328 555 554 328 555 554 328 555 554 328 555 554 328 555 554 328 555 554 328 555 556 557 557 557 557 557 557	3.4 3.0 boded Di lume N m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4 0.3 0 0.0 scharge /olume (m ³) 230.0 281.4 312.4 334.4 365.8 389.8 409.3 425.9 452.6 492.6 535.4 567.5 614.7 650.1 678.3	<pre> K K K K K Time-Peak (mins)</pre>	
	8640 min Winter 3 10080 min Winter 3 Storm Event 60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 280 min Winter 5760 min Winter	Rai (mm/h 53.700 53.700 53.7 32.8 24.3 19.5 14.2 11.3 9.5 8.2 6.6 4.7 3.4 2.7 1.5 1.3 1.1	0.002 0.000 n Flc nr) Vo. (1779) 364 310 509 224 373 554 282 505 794 173 760 993 581 320 .38	3.4 3.0 boded Di lume N m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4 0.3 0 0.0 scharge /olume (m ³) 230.0 281.4 312.4 334.4 365.8 389.8 409.3 425.9 452.6 492.6 535.4 567.5 614.7 650.1	<pre> K K K K K Time-Peak (mins)</pre>	

©1982-2018 Innovyze

Weetwood		Page 3
Joseph's Well		
Hanover Walk		
Leeds, LS3 1AB		- Micro
Date 06/11/2018 13:24	Designed by KeelyBonser	Drainage
File 2018-11-06 4322 Basin 1	Checked by	Diamage
XP Solutions	Source Control 2018.1.1	
Ra	infall Details	
Rainfall Model		Yes
Return Period (years)	100 Cv (Summer) 0.	
Region Engl M5-60 (mm)	and and Wales Cv (Winter) 0. 19.000 Shortest Storm (mins)	15
Ratio R	0.381 Longest Storm (mins) 10	
Summer Storms	-	+40
Tin	me Area Diagram	
Tot	al Area (ha) 0.510	
	ime (mins) Area com: To: (ha)	
	0 4 0.510	

©1982-2018 Innovyze

Weetwood	Page 4	
Joseph's Well		
Hanover Walk		
Leeds, LS3 1AB	Micco	
Date 06/11/2018 13:24	Designed by KeelyBonser	
File 2018-11-06 4322 Basin 1	Checked by	C
XP Solutions	Source Control 2018.1.1	
1	Model Details	
Storage is Or	nline Cover Level (m) 37.000	
	or Pond Structure	
	ert Level (m) 35.700	
	rea (m ²) Depth (m) Area (m ²)	
0.000	151.0 1.300 368.7	
Hvdro-Brake®	B Optimum Outflow Control	
	t Reference MD-SHE-0101-4700-1100-4700	
	gn Head (m) 1.100 Flow (1/s) 4.7	
_	Flush-Flo™ Calculated	
	Objective Minimise upstream storage	
P	Application Surface	
_	p Available Yes	
	ameter (mm) 101	
	t Level (m) 35.600 ameter (mm) 150	
Minimum Outlet Pipe Dia Suggested Manhole Dia		
Control Po	oints Head (m) Flow (l/s)	
Design Point (Ca	Calculated) 1.100 4.7	
	Flush-Flo™ 0.325 4.7	
	Kick-Flo® 0.690 3.8	
Mean Flow over 1	Head Range - 4.1	
Hydro-Brake® Optimum as specified.	been based on the Head/Discharge relationship for t Should another type of control device other than a en these storage routing calculations will be	
	w (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)	
0.100 3.3 1.200 0.200 4.5 1.400	4.9 3.000 7.5 7.000 11.2 5.3 3.500 8.1 7.500 11.6	
0.300 4.7 1.600	5.6 4.000 8.6 8.000 12.0	
0.400 4.7 1.800	5.0 1.000 0.0 1.200 5.9 4.500 9.1 8.500 12.3	
0.500 4.5 2.000	6.2 5.000 9.6 9.000 12.6	
0.600 4.3 2.200	6.5 5.500 10.0 9.500 13.0	
0.800 4.1 2.400	6.8 6.000 10.4	
1.000 4.5 2.600	7.0 6.500 10.8	
@199	82-2018 Innovyze	

Delivering client focussed services

Flood Risk Assessments Flood Consequences Assessments Surface Water Drainage Foul Water Drainage Environmental Impact Assessments River Realignment and Restoration Water Framework Directive Assessments Flood Defence Consent Applications Sequential, Justification and Exception Tests Utility Assessments Expert Witness and Planning Appeals Discharge of Planning Conditions

www.weetwood.net